Die Pyramiden und Denkmäler von Ägypten sind sehr bekannt, aber weniger die gigantischen unterirdischen Bauten in diesem Land.
 
In der Nähe der Stufenpyramide von Sakkara, in 12 Metern Tiefe gibt es einen beeindruckenden unterirdischen Komplex mit riesigen Sarkophagen, die jeden Besucher zum Staunen bringt.
 
Seine Konstruktion bleib bis heute noch ein großes Geheimnis.
 
Seine gigantischen Ausmaße lassen uns an das Vorhandensein von riesigen Wesen glauben. Ist es vielleicht ein weiterer Beweis für die Existenz einer unglaublich fortgeschrittenen Zivilisation einer unbekannten Vergangenheit?
 
 
 
 
 
 
 
 

Redaktion: Marketing Solutions Europe Ltd. Verantwortlich für alle Inhalte

Copyright © 2019 Das Copyright dieser Seite liegt, wenn nicht anders vermerkt, bei der Marketing Solutions Europe Ltd.

Bildnachweis: Fotolia / Shutterstock /Getty Images/stock photos/Pixabay/imgur

Dieser Beitrag stellt ausschließlich die Meinung des Verfassers dar. Er muss nicht zwangsläufig die Meinung der Marketing Solutions Europe Ltd. oder des Distributors der Marketing Solutions Europe Ltd. der Firma Ortus Marketing & Consulting darstellen und auch nicht die Meinung anderer Autoren dieser Seite wiedergeben.

 
Quelle: Event Horizon Telescope [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)]
 
 
 
 

Es ist eine Sensation, an der von zahlreichen, internationalen Forschern gemeinsam jahrelang gearbeitet worden ist: Zum ersten Mal ist Astronomen die Aufnahme eines Schwarzen Lochs gelungen. Es stammt aus der Galaxie Messier 87, die 55 Millionen Lichtjahre entfernt liegt.

Ein Lichtjahr sind knapp 9,5 Billionen Kilometer. Einen Namen hat das Schwarze Loch noch nicht, es soll aber noch einen bekommen.

Schwarze Löcher waren bisher auch für die besten Teleskope unsichtbar und es gab nur Illustrationen. Zu weit entfernt waren sie und meist zu klein.
 
Nun ist es Forschern des Teleskopnetzwerks Event Horizon (EHT) gelungen, das erste Foto aufzunehmen. Es zeigt einen dunklen Fleck vor einem verschwommenen, leuchtenden Ring. Das Leuchten sei charakteristisch, heißt es und das Foto decke sich mit bisherigen Beobachtungen.
 
Die Forscher rund um das Projekt haben insgesamt acht Radioteleskope auf vier Kontinenten miteinander kombiniert, um dieses Bild möglich zu machen.

Dadurch entsteht ein virtuelles Superteleskop, dessen Durchmesser so groß ist wie die Erde.

Dieses virtuelle Event Horizon Telescope erreicht eine Detailschärfe, mit der sich umgerechnet von Berlin aus eine Zeitung in New York lesen lassen würde.

Stationiert sind die Teleskope in Hawaii, Arizona, Spanien, Mexiko, Chile, Frankreich, Grönland und am Südpol. „Die Ergebnisse geben uns zum ersten Mal einen klaren Blick auf ein supermassives Schwarzes Loch“, betonte Anton Zensus, Direktor am Bonner Max-Planck-Institut für Radioastronomie.

Dort wurden die Daten der beteiligten Radioteleskope kombiniert.

Weiterlesen: https://futurezone.at/science/sensation-perfekt-das-erste-bild-vom-schwarzen-loch/400463017

 

Quelle: https://futurezone.at

 

 

Redaktion: Marketing Solutions Europe Ltd. Verantwortlich für alle Inhalte

Copyright © 2019 Das Copyright dieser Seite liegt, wenn nicht anders vermerkt, bei der Marketing Solutions Europe Ltd.

Bildnachweis: Fotolia / Shutterstock /Getty Images/stock photos/Pixabay/imgur

Dieser Beitrag stellt ausschließlich die Meinung des Verfassers dar. Er muss nicht zwangsläufig die Meinung der Marketing Solutions Europe Ltd. oder des Distributors der Marketing Solutions Europe Ltd. der Firma Ortus Marketing & Consulting darstellen und auch nicht die Meinung anderer Autoren dieser Seite wiedergeben.

 

 
 
 

Ein Auszug der Schumannresonanz von Wikipedia

Als Schumann-Resonanz (nach Winfried Otto Schumann) bezeichnet man das Phänomen, dass elektromagnetische Wellen einer bestimmten Frequenz mit dem Umfang der Erde stehende Wellen bilden.

Der mittlere Erdumfang beträgt a = 39.985.427 m (am Äquator 40.075.004 m, Polumfang 39.940.638 m). Bei einer Ausbreitungsgeschwindigkeit von c = 299.792.458 m/s (Vakuum) ergeben sich für den mittleren Erdumfang dabei rechnerisch c/a = 7,5 Hz. Genauere Berechnungen führen auf die Formel (siehe Literatur: Jackson, Elektrodynamik)



Für die n-te Frequenz, wodurch die niedrigste Frequenz bei 10,6 Hz läge.
Durch Dispersion, durch Ionosphäreneffekte und andere nicht-ideale Eigenschaften des Systems reduziert sich diese Frequenz noch um ein paar Hertz.

Durch Blitze und andere Vorgänge wird in der Atmosphäre und Ionosphäre ein  breites Spektrum elektromagnetischer Wellen ausgesendet, die auch als Sferics  bezeichnet werden. Niederfrequente Wellen breiten sich hauptsächlich in der nur wenig leitfähigen Atmosphäre zwischen dem elektrisch gut leitenden Erdboden und der gut leitenden Ionosphäre aus.

Wellen, die sich nach einer Erdumrundung wieder in der gleichen Phase befinden (oder der Erdumfang ist ein ganzzahliges Vielfaches der Wellenlänge) werden verstärkt, andere löschen sich aus. Dadurch ergibt sich eine Resonanzfrequenz von durchschnittlich etwa 7,83 Hz, die z. B. durch die Jahreszeiten und andere Einflüsse leicht schwankt.

Auch bei Vielfachen dieser Frequenz liegt eine Schumann-Resonanz vor, das stärkste Signal liegt aber bei der Grundfrequenz von 7,83 Hz.



Messung von Schumann-Resonanzwellen
 
Die Messung der Schumann-Resonanzwellen bedingt einen enorm hohen technischen Aufwand für Empfangs- und Messungseinrichtungen. Prof. Dr. H. König gibt speziell für Messungen der Resonanzfrequenzen eine magnetische Empfangsantenne mit einer Induktivität von 6.600 H6 und eine Eigenresonanz von 74 Hz sowie einen Spulendurchmesser von 2m an. Die Windungszahl beträgt 40. 000 und die Gesamtmasse 153 kg.

Durch die technischen Entwicklungen in den letzten Jahren und den Einsatz von der Pico-Technology (PC-Oszilloskopen) sind wir heute in der Lage die Resonanzwellen einfacher nachzuweisen. Trotz allem sind in diesem Bereich und gerade bei diesen tiefen Frequenzbereichen besondere Eigenschaften zu berücksichtigen. Wir brauchen eine hohe Verstärkung für diese schwachen Signale.

Dies hängt damit zusammen, dass zu der Grundwelle möglichst auch die ersten Oberwellen empfangen werden sollen, ein sogenannter breitbandiger Empfang. Hierbei muss beachtet werden, dass sich Frequenzen aus technischen Geräten störend auswirken können, z.B. auf die Netzfrequenz von 50Hz.

Auch weit entfernte elektrische Bahnlinien können zu Störungen beitragen, sodass diese Aussendungen einen deutlich höheren Empfangspegel aussenden, als die schwachen Resonanzwellen ergeben. Weitere Störfelder sind die Versorgungsnetze und die Art der angeschlossenen Verbraucher. Dies kann zu weiteren sehr störenden Aussendungen führen.


Hierzu gehören die Oberwellen einer Netzfrequenz bei 100 Hz und bei 150 Hz sowie die sogenannten subharmonischen Schwingungen. Diese werden auch als Unterschwingungen bezeichnet. Leistungs-Elektroniken erzeugen und belegen Frequenzen in einem Bereich von 25 Hz, 12,5 Hz und 6,25  Hz. Andere Frequenzbelegungen sind durchaus möglich.

 
 
 
 
 
 


Einfluss auf Psyche und Auswirkungen auf die Gehirnfrequenzen

Betrachten wir die Resonanzen in Bezug auf Gehirnfrequenzen von Menschen (und Tieren) haben wir einen Hauptwert (eine Frequenz mit größter Amplitude) von 7,83 Hz. Die Schumannresonanz steht in Abhängigkeit zur Größe der Erde (Hohlraumresonator) und der Magnetosphäre sowie der Ionosphäre. Man kann sagen, dass sich die Ausdehnung der unteren Ionosphärenschicht verändert.

Durch die Veränderungen auf der Sonne kommt es immer wieder zu einer Beeinflussung dieser Ionosphärenschicht, wobei sich die Resonanzfrequenzen verändern können. Die Sonnenzyklen bewirken somit eine Schwankung, die in dem Bereich des menschlichen Gehirns, welches nach diesen Frequenzen ausgerichtet ist, zu Veränderungen führt. Das menschliche Gehirn ist sozusagen auf bestimmte Frequenzbereiche ausgerichtet (siehe hierzu auf unserer Netzseite: Circadiane Rhythmen, Wever-Bunker-Studie, Forschungen am Max-Planck-Institut).

Betrachtet man den Bereich von 7 -8 Hz haben wir am oberen Ende der Thetawellen (4-7 Hz, leichter Schlafzustand) und gleichzeitig das untere Ende im Alphawellen Bereich (7-13 Hz, Entspannung im Wachzustand) eine entsprechende Kennzeichnung. Bei einem Intervall von 13-14 Hz bewegen wir uns in einem Bereich am oberen Ende der Alphawellen und dem unteren Bereich der Betawellen, wobei man den Bereich zwischen 13 und 14 Hz als konzentrierten Wachzustand bezeichnen kann.

 

Der Schumann Hauptwert von 7,83 Hz steht in unmittelbarer Resonanz mit unserem Gehirn und Nervensystem.

 

Diese haben wiederum eine direkte Beziehung miteinander und erzeugen somit Signale in unserem Nervensystem. Wir sprechen hier von einer exakten Resonanz mit dem Hippocampus im Gehirn.

Dies ist der spezielle Gehirnbereich, der auch mit der Informationsspeicherung und dem Lernen zusammenhängt. Wenn wir nun von einer Verschiebung bzw. Erhöhung einer gegenwärtigen Resonanz sprechen, hier in dem schnelleren Bereich des Alpharhythmus, verändert sich lediglich die Kurvenform der Schumannresonanzen (Modifizierung) und somit ausschließlich eine Änderung im Oberwellenbereich.


Langzeitstudien der Schumannresonanz existieren seit 20 Jahren, dabei wurden Frequenz- und Amplitudenschwankungen in unterschiedlichen Zeitabständen gemessen. Hierbei wurden Einflüsse auf diese Frequenzschwankungen festgestellt und Korrelationen zu Sonnenzyklus, Sferics und Röntgenstrahlen hergestellt – explizit auch Amplitudenveränderungen und Gewitteraktivitäten in unterschiedlichen geographischen Bereichen der Erde.

Dies hat gezeigt, dass es zu Schwankungen in der Ionosphäre und den unterschiedlichen Frequenzen kommen kann.

 


Literatur
König, H. L.: Unsichtbare Umwelt. Eigenverlag,
München, 1983
Friese, W., DG9WF: Universelles analoges Pla-
tinensystem. FUNKAMATEUR 52 (2003) H. 4,
S. 366–367; H. 11, S. 1117–1121
Schlegel, K.; Füllekrug, M.: 50 Jahre Schumann-
Resonanzen – Weltweite Ortung von Blitzen. Wi-
ley-VCH Verlag, Weinheim, Physik in unserer
Zeit 33 (2002) H. 6
Volland, H.: Die Ausbreitung langer Wellen. Vie-
weg Verlag, Braunschweig 1967
Max-Planck-Institut für Aeronomie Katlenburg-
Lindau: Schumann-Resonanzwellen. Schriftliche
Auskunft
Leonhardt, F.: Methoden der Blitzortung. Ar-
beitskreis Amateurfunk & Telekommunikation in
der Schule e.V., AATiS, Praxisheft 9
Leybold Didactic GmbH: Homepage.
www.leybold-didactic.com
Friese, W., DG9WF: UAP-System.
www.sfericsempfang.de

 

 

Redaktion: Marketing Solutions Europe Ltd. Verantwortlich für alle Inhalte

Copyright © 2019 Das Copyright dieser Seite liegt, wenn nicht anders vermerkt, bei der Marketing Solutions Europe Ltd.

Bildnachweis: Fotolia / Shutterstock /Getty Images/stock photos/Pixabay/imgur

Dieser Beitrag stellt ausschließlich die Meinung des Verfassers dar. Er muss nicht zwangsläufig die Meinung der Marketing Solutions Europe Ltd. oder des Distributors der Marketing Solutions Europe Ltd. der Firma Ortus Marketing & Consulting darstellen und auch nicht die Meinung anderer Autoren dieser Seite wiedergeben.

 
 
 
 
 
Vor 500000 Jahren machten sich die Völker Nibirus auf die Erde zu kolonisieren. Die mutigsten dieser Ausserirdischen nannten sich Enki und Enlil. Sie sind uns bekannt als die Anunnaki und sind die wahren Schöpfer des Homo Sapiens. Als in Di Quar im damaligen Mesopotamien im jahr 2016 ei neuer Flughafen gebaut wurde fand man Überreste des allerersten Weltraum bahnhofes der Menschen. Erbaut im Jahr 5000 v.Chr. von den Sumerern, deren Lehrmeister und Schöpfer die Anunnaki waren. Bekannt sind diese Geschichten seit Erich von Däniken, der diese Wissenschaft die Präastronautik nennt.
 
 
 
 
 

Redaktion: Marketing Solutions Europe Ltd. Verantwortlich für alle Inhalte

Copyright © 2019 Das Copyright dieser Seite liegt, wenn nicht anders vermerkt, bei der Marketing Solutions Europe Ltd.

Bildnachweis: Fotolia / Shutterstock /Getty Images/stock photos/Pixabay/imgur

Dieser Beitrag stellt ausschließlich die Meinung des Verfassers dar. Er muss nicht zwangsläufig die Meinung der Marketing Solutions Europe Ltd. oder des Distributors der Marketing Solutions Europe Ltd. der Firma Ortus Marketing & Consulting darstellen und auch nicht die Meinung anderer Autoren dieser Seite wiedergeben.

 
 
Verschränkte Zustände
Eine besondere quantenmechanische Eigenschaft ist die Verschränkung.
Zwei oder mehr Teilchen bezeichnet man als verschränkt, wenn sie nicht unabhängig voneinander beschrieben werden können. Klassisch ist es ja immer möglich,
 
Eigenschaften von Objekten zu beschreiben, ohne dabei die Eigenschaften anderer Objekte kennen zu müssen. Zwar können Ort und Geschwindigkeit einer Billardkugel von dem vorangegangenen Stoß mit einer anderen Kugel abhängen, nach dem Stoß laufen aber beide Kugeln auf eigene Bahnen, die unabhängig voneinander beschrieben werden können.
 
In der Quantenphysik ist das anders. Nach einem Stoß - oder allgemeiner: nach einer Wechselwirkung - können sich mehrere Teilchen in einem gemeinsamen Zustand befinden. Dieser Zustand kann zum Beispiel durch eine gemeinsame Wellenfunktion beschrieben werden, bei der die Wahrscheinlichkeit, mit denen eine Eigenschaft des einen Teilchens gemessen wird, von der Messung des anderen Teilchens abhängt.
 
Dabei steht zur Zeit der Trennung der beiden Teilchen jedoch noch nicht fest, in welchem Zustand sich die Teilchen bei der Messung befinden werden. Für jedes einzelne der verschränkten Quantenteilchen ist also der Ausgang einer Messung unbestimmt, während die Korrelation von Begin an feststeht.
 
Beispiel: Verschränkung zweier Photonen
Ein Standardexperiment zur Untersuchung von Verschränkungen befasst sich mit verschränkten Photonen. Diese lassen sich erzeugen, indem man einen Kristall verwendet, der die Eigenschaft hat zwei Photonen aus einem erzeugen zu können.
 
Aufgrund von Erhaltungsgesetzen (z.B. Energieerhaltung, Impulserhaltung und Drehimpulserhaltung) sind die beiden entstandenen Photonen nicht unabhängig voneinander.
 
Eine Eigenschaft der Photonen, die verschränkt ist, ist die Polarisation. Jedes der Photonen kann eine beliebige Polarisation haben, aber wenn die Polarisation des einen Photons bekannt ist, dann folgt daraus direkt die Polarisation des anderen Photons.
 
Solch eine Abhängigkeit wird in der Physik als Korrelation bezeichnet.
 
Das besondere an einer quantenmechanischen Korrelation oder Verschränkung ist nun, dass die Polarisation der einzelnen Photonen zum Zeitpunkt ihrer Entstehung noch gar nicht feststeht. Sie wird erst bei der Messung festgelegt (siehe Kopenhagener Deutung).
 
Es steht aber bereits mit der Erzeugung der Photonen fest, dass die Polarisationen korreliert sind. Dieser scheinbare Widerspruch lässt sich durch eine gemeinsame Wellenfunktion der beiden Photonen mathematisch beschreiben, klassisch erklärbar ist die quantenmechanische Verschränkung jedoch nicht.
 
Sie führt dazu, dass die Quantenmechanik nicht lokal ist, denn die Messung an einem Photon bestimmt mögliche Ausgänge vom Messungen an einem anderen Photon, selbst wenn dieses sehr weit entfernt ist.
 
Es wurde mittlerweile gezeigt, dass die Korrelation von Anfang an da ist und nicht von einem Messort zum anderen übertragen werden muss. Man kann auch zeigen, dass keine Informationsübertragung mit der Verschänkung möglich ist. Lichtgeschwindigkeit bleibt also die größte Geschwindigkeit mit der Information übertragen werden kann.
 
 
 
 
Video über das quantenmechanische Phänomen der Verschränkung
 
 
 
 
 
 
 
Quelle: Joachim Schulz - Nur echt auf www.Quantenwelt.de
 

Redaktion: Marketing Solutions Europe Ltd. Verantwortlich für alle Inhalte

Copyright © 2019 Das Copyright dieser Seite liegt, wenn nicht anders vermerkt, bei der Marketing Solutions Europe Ltd.

Bildnachweis: Fotolia / Shutterstock /Getty Images/stock photos/Pixabay/imgur

Dieser Beitrag stellt ausschließlich die Meinung des Verfassers dar. Er muss nicht zwangsläufig die Meinung der Marketing Solutions Europe Ltd. oder des Distributors der Marketing Solutions Europe Ltd. der Firma Ortus Marketing & Consulting darstellen und auch nicht die Meinung anderer Autoren dieser Seite wiedergeben.

      wissensmanufaktur  contralogoneu  hoermann  14907249 324008341302361 3621767983739372323 n  dahle.at button    correctiv

 

 

 

Ansprechpartner im deutschsprachigen Raum:
Telefon: 06063-9517522
Fax: 06063-9517524
Email: Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

© 2017 by Marketing Solutions Europe Ltd.